Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315452

RESUMEN

According to WHO, in 2021, there was an estimation of 247 million malaria cases from 84 malaria-endemic countries. Globally an estimated count of 2 billion malaria cases and 11.7 million deaths due to malaria were recorded in the past two decades. Further, the emergence of drug-resistant mosquitos threatens mankind. Therefore, the development of newer larvicidal agents is the need of the hour. This research identifies a new series of variably substituted indolizines for their effectiveness in controlling Anopheles arabiensis larvae through larvicidal activity. The series of Ethyl 3-benzoyl-7-(piperidin-1-yl)indolizine-1-carboxylate analogues (4a-j) were synthesized by reacting 4-(piperidin-1-yl)pyridine, phenacyl bromides with ethyl propiolate via 1, 3-dipolar cycloaddition and the green metrics of the process are reported. All the newly synthesized compounds were characterized by spectroscopic techniques such as 1H NMR,13C NMR, FT-IR, and HRMS. The larvicidal effectiveness of the newly synthesized compounds was assessed against Anopheles arabiensis. Among the compounds studied, namely 4c, 4d, 4e, and 4f, displayed the most notable larval mortality rates within the series, reaching 73%, 81%, 76%, and 71% respectively, in contrast with the negative control acetone. In comparison, the standard Temephos exhibited a mortality rate of 99% at the same concentration. Furthermore, computational approaches including molecular docking and molecular dynamics simulations identified the potential targets of the series compounds as the larval Acetylcholinesterase (AChE) enzyme and the Sterol Carrier Protein-2 (SCP-2) protein. However, it is essential for these computational predictions to undergo experimental validation.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-13, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37259506

RESUMEN

Malaria is one of the most known vector-borne diseases caused by female Anopheles mosquito bites. According to WHO, about 247 million cases of malaria and 619,000 deaths were estimated worldwide in 2021, of which 95% of the cases and 96% of deaths occurred in the African region. Sadly, about 80% of all malaria deaths were of children under five years old. Despite the availability of different insecticides used to control this disease, the emergence of drug-resistant mosquitoes threatens public health. This, in turn, highlighted the need for new larvicidal agents that are effective at different larval life stages. This study aimed to identify novel larvicidal agents. To this end, a series of ethyl 2,4,6-trisubstituted-1,4-dihydropyrimidine-5-carboxylates 8a-i was synthesized using a three-step chemical synthetic approach via a Biginelli reaction employed as a key step. All title compounds were screened against Anopheles arabiensis to determine their larvicidal activities. Among them, two derivatives, ethyl 2-((4-bromophenyl)amino)-4-(4-fluorophenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate 8b and ethyl 2-((4-bromo-2-cyanophenyl)amino)-4-(4-fluorophenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate 8f, showed the highest larvicidal activity, with mortality of 94% and 91%, respectively, and emerged as potential larvicidal agents. In addition, computational studies, including molecular docking and molecular dynamics simulations, were carried out to investigate their mechanism of action. The computational results showed that acetylcholinesterase appears to be a plausible molecular target for their larvicidal property.Communicated by Ramaswamy H. Sarma.

3.
Front Vet Sci ; 10: 1157667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323832

RESUMEN

Introduction: Bibliometrics is a quantitative analytic strategy used to assess the unit of publications per each field of research. Bibliometric studies are commonly employed to examine the current research climate, potential developments, and development trends in certain domains. In this work, the major contributors to camel research throughout the past century are discussed, along with the funding sources, academic institutions, scientific disciplines, and countries that contributed to "Camel Research". Methods: The Web of Science (WOS) database was used to retrieve the publications based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) instructions. Results: There are 7,593 articles dedicated to camel research on the Web of Science (as of August 1st, 2022). Three stages were involved in the publication of a study on camels. At the beginning, from 1877 to 1965, there were fewer than ten new publications per year. The second stage comprised 100 publications per year (1968-2005). Since 2010, nearly 200 new papers have been published each year. King Saud and King Faisal universities contributed > (0.08) of the total publications. While more than 1,000 funding agents were retrieved, the Natural Science Foundation of China (NSFC) showed the greatest rate of funded projects (0.17). Camel research was included in 238 scientific disciplines. The top disciplines were Veterinary Sciences (0.39), Agriculture Dairy Animal Science (0.144), and Food Science Technology (0.087). Conclusion: There has been an increase in interest in camels in recent years, but the research trends in camel health and production need greater support.

4.
Curr Pharm Des ; 29(15): 1193-1217, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37132105

RESUMEN

Icacinaceae, an Angiospermic family comprising 35 genera and 212 accepted species, including trees, shrubs, and lianas with pantropical distribution, is one of the most outshining yet least explored plant families, which despite its vital role as a source of pharmaceuticals and nutraceuticals has received a meagre amount of attraction from the scientific community. Interestingly, Icacinaceae is considered a potential alternative resource for camptothecin and its derivatives, which are used in treating ovarian and metastatic colorectal cancer. However, the concept of this family has been revised many times, but further recognition is still needed. The prime objective of this review is to compile the available information on this family in order to popularize it in the scientific community and the general population and promote extensive exploration of these taxa. The phytochemical preparations or isolated compounds from the Icacinaceae family have been centrally amalgamated to draw diverse future prospects from this inclusive plant species. The ethnopharmacological activities and the associated endophytes and cell culture techniques are also depicted. Nevertheless, the methodical evaluation of the Icacinaceae family is the only means to preserve and corroborate the folkloristic remedial effects and provide scientific recognition of its potencies before they are lost under the blanket of modernization.


Asunto(s)
Etnobotánica , Extractos Vegetales , Humanos , Etnobotánica/métodos , Etnofarmacología/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fitoquímicos/farmacología , Biotecnología , Fitoterapia/métodos
5.
Front Vet Sci ; 10: 1157683, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205230

RESUMEN

Publications are an important measure of scientific and technological progress. The quantitative examination of the number of publications in a certain research topic is known as bibliometrics. Bibliographic studies are widely used to analyse the condition of research, future potential, and current growth patterns in a certain topic. It can serve as a basis for making decisions and implementing strategies to achieve long-term development goals. To our knowledge, no research has been conducted in these domains; so, this work aims to employ bibliometric analysis to provide comprehensive data on publications related to anticoccidial drugs. As a result, the current study uses bibliometric analysis to track the evolution of anticoccidial drugs and its consequences in the academic and public worlds via a survey of relevant scientific and popular publications. The Dimensions database was used to retrieve the bibliographical statistics, which were then cleaned and analyzed. The data was also loaded into the VOS viewer, which generated a network visualization of the authors with the most joint articles. The investigation discovered three stages of publications and citations since the first article on anticoccidial drugs in 1949. The first stage, which ran from 1920 to 1968, was characterized by a scarcity of research articles on anticoccidial drugs. From 1969 to 2000, the second stage was marked by a stable and marginally increased number of articles. The scientific field was characterized by an increasing trend in the number of publications and their citations from 2002 to 2021. The study gave a complete list of the top anticoccidial drugs funding agents, countries, research institutes, most cited publications, and important co-authorship and partnerships. The outcomes of the study will help veterinary practitioners and researchers understand the trends and best sources of knowledge in the field of anticoccidial medications.

6.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37242448

RESUMEN

The clinical usefulness of doxorubicin (DOX) is limited by its serious adverse effects, such as cardiotoxicity. Pregnenolone demonstrated both anti-inflammatory and antioxidant activity in animal models. The current study aimed to investigate the cardioprotective potential of pregnenolone against DOX-induced cardiotoxicity. After acclimatization, male Wistar rats were randomly grouped into four groups: control (vehicle-treated), pregnenolone (35 mg/kg/d, p.o.), DOX (15 mg/kg, i.p, once), and pregnenolone + DOX. All treatments continued for seven consecutive days except DOX, which was administered once on day 5. The heart and serum samples were harvested one day after the last treatment for further assays. Pregnenolone ameliorated the DOX-induced increase in markers of cardiotoxicity, namely, histopathological changes and elevated serum levels of creatine kinase-MB and lactate dehydrogenase. Moreover, pregnenolone prevented DOX-induced oxidative changes (significantly lowered cardiac malondialdehyde, total nitrite/nitrate, and NADPH oxidase 1, and elevated reduced glutathione), tissue remodeling (significantly decreased matrix metalloproteinase 2), inflammation (significantly decreased tumor necrosis factor-α and interleukin 6), and proapoptotic changes (significantly lowered cleaved caspase-3). In conclusion, these findings show the cardioprotective effects of pregnenolone in DOX-treated rats. The cardioprotection achieved by pregnenolone treatment can be attributed to its antioxidant, anti-inflammatory, and antiapoptotic actions.

7.
Pharmaceutics ; 15(5)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37242664

RESUMEN

The efficacy of topical antifungal therapy in onychomycosis has been hindered by the failure of the antimycotic to permeate the nail plate. This research aims to design and develop a transungual system for the effective delivery of efinaconazole utilizing constant voltage iontophoresis. Seven prototype drug-loaded hydrogel formulations (E1-E7) were prepared to assess the influence of solvent (ethanol) and cosolvent (Labrasol®) on transungual delivery. Optimization was performed to evaluate the effect of three independent variables; voltage, solvent-to-cosolvent ratio, and penetration enhancer (PEG 400) concentration on critical quality attributes (CQAs), such as drug permeation and loading into the nail. The selected hydrogel product was characterized for pharmaceutical properties, efinaconazole release from the nail, and antifungal activity. Preliminary data indicates ethanol, Labrasol®, and voltage influence the transungual delivery of efinaconazole. Optimization design indicates a significant impact by applied voltage (p-0.0001) and enhancer concentration (p-0.0004) on the CQAs. Excellent correlation between selected independent variables and CQAs was confirmed by the high desirability value (0.9427). A significant (p < 0.0001) enhancement in the permeation (~78.59 µg/cm2) and drug loading (3.24 µg/mg) was noticed in the optimized transungual delivery with 10.5 V. FTIR spectral data indicates no interaction between the drug and excipients, while the DSC thermograms confirmed the amorphous state of the drug in the formulation. Iontophoresis produces a drug depot in the nail that releases above the minimum inhibitory concentration level for an extended period, potentially reducing the need for frequent topical treatment. Antifungal studies further substantiate the release data and have shown remarkable inhibition of Trichophyton mentagrophyte. Overall, the promising results obtained here demonstrate the prospective of this non-invasive method for the effective transungual delivery of efinaconazole, which could improve the treatment of onychomycosis.

8.
Int Immunopharmacol ; 118: 109998, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004348

RESUMEN

BACKGROUND: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a pathogen associated with an acute respiratory infection that has a high mortality rate in humans. It was first identified in June of 2012 in the Arabian Peninsula. The success of the COVID-19 vaccines has shown that it is possible to take advantage of medical and scientific advances to produce safe and effective vaccines for coronaviruses. This study aimed to examine the safety and immunogenicity of MERS-CoV vaccines. METHODS: The research method Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was used as the guideline for this study. RevMan 5.4 software was used to perform a meta-analysis of the included studies. The safety was assessed by recording adverse events following vaccination, and the immunogenicity was assessed by using seroconversion. RESULTS: The study included five randomized controlled trials that met the inclusion criteria after screening. The studies had 173 participants and were performed in four countries. The vaccines examined were the ChAdOx1 MERS vaccine, MVA-MERS-S vaccine, and GLS-5300 DNA MERS-CoV vaccine. The meta-analysis showed no significant differences in local adverse effects (all local adverse effects and pain) or systemic adverse effects (all systemic adverse effects, fatigue, and headache) among participants in groups receiving a high-dose vaccine or a low-dose vaccine. There were, however, higher levels of seroconversion in high-dose groups than in low-dose groups (OR 0.16 [CI 0.06, 0.42, p = 0.0002]). CONCLUSION: The findings showed that high doses of current MERS-CoV vaccine candidates conferred better immunogenicity than low doses and that there were no differences in the safety of the vaccines.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Vacunas contra la COVID-19 , Anticuerpos Antivirales , ADN
9.
Int Immunopharmacol ; 119: 110206, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37087871

RESUMEN

BACKGROUND: Recently, there has been an uptick in reported cases of monkeypox (Mpox) in Africa and across the globe. This prompted us to investigate the efficacy of the two vaccines that can prevent Mpox, the modified vaccinia Ankara virus (MVA) vaccine and ACAM2000 vaccine. We analyzed them to determine their rates of humoral cell responses, adverse events, and rash reactions and used these factors as the primary indicators. METHODS: This study adapted primary data obtained from the Medline, Google Scholar, and Cochrane Library databases. We included a total of eight studies, three of which explored the ACAM2000 vaccine and five of which explored the JYNNEOS MVA vaccine. RESULTS: There were significant differences in the rates of humoral responses after inoculation by the two vaccines. JYNNEOS MVA vaccine immunization resulted in a statistically significant increased humoral immune response with an effect size of 81.00 (42.80, 119.21) at a 95% CI and a rash reaction with an effect size of 96.50 (42.09, 235.09.21) at a 95% CI. ACAM2000 resulted in a lesser increase in neutralizing antibodies than JYNNEOS MVA vaccine. Similar findings were identified for the rates of adverse reactions, but the difference was not statistically significant. The differences in rash reaction rates in the two vaccination groups were also not statistically significant. CONCLUSION: ACAM2000 and JYNNEOS vaccines have proven to be efficient in preventing Mpox even though variations exist in their modes of action and associated significant effects. The nonreplicating nature of JYNNEOS prevents the occurrence of the adverse effects seen with other vaccines.


Asunto(s)
Exantema , Humanos , Virus Vaccinia
10.
Molecules ; 28(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110650

RESUMEN

Major obstacles faced by the use of nonsteroidal anti-inflammatory drugs (NSAID) are their gastrointestinal toxicity induced by non-selective inhibition of both cyclooxygenases (COX) 1 and 2 and their cardiotoxicity associated with a certain class of COX-2 selective inhibitors. Recent studies have demonstrated that selective COX-1 and COX-2 inhibition generates compounds with no gastric damage. The aim of the current study is to develop novel anti-inflammatory agents with a better gastric profile. In our previous paper, we investigated the anti-inflammatory activity of 4-methylthiazole-based thiazolidinones. Thus, based on these observations, herein we report the evaluation of anti-inflammatory activity, drug action, ulcerogenicity and cytotoxicity of a series of 5-adamantylthiadiazole-based thiazolidinone derivatives. The in vivo anti-inflammatory activity revealed that the compounds possessed moderate to excellent anti-inflammatory activity. Four compounds 3, 4, 10 and 11 showed highest potency (62.0, 66.7, 55.8 and 60.0%, respectively), which was higher than the control drug indomethacin (47.0%). To determine their possible mode of action, the enzymatic assay was conducted against COX-1, COX-2 and LOX. The biological results demonstrated that these compounds are effective COX-1 inhibitors. Thus, the IC50 values of the three most active compounds 3, 4 and 14 as COX-1 inhibitors were 1.08, 1.12 and 9.62 µΜ, respectively, compared to ibuprofen (12.7 µΜ) and naproxen (40.10 µΜ) used as control drugs. Moreover, the ulcerogenic effect of the best compounds 3, 4 and 14 were evaluated and revealed that no gastric damage was observed. Furthermore, compounds were found to be nontoxic. A molecular modeling study provided molecular insight to rationalize the COX selectivity. In summary, we discovered a novel class of selective COX-1 inhibitors that could be effectively used as potential anti-inflammatory agents.


Asunto(s)
Antineoplásicos , Tiadiazoles , Humanos , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Tiadiazoles/uso terapéutico , Simulación del Acoplamiento Molecular , Antiinflamatorios/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Antineoplásicos/farmacología , Relación Estructura-Actividad , Edema/tratamiento farmacológico
11.
Plants (Basel) ; 12(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903944

RESUMEN

Glycyrrhiza glabra L. (belonging to the family Leguminosae), commonly known as Licorice, is a popular medicinal plant that has been used in traditional medicine worldwide for its ethnopharmacological efficacy in treating several ailments. Natural herbal substances with strong biological activity have recently received much attention. The main metabolite of glycyrrhizic acid is 18ß-glycyrrhetinic acid (18ßGA), a pentacyclic triterpene. A major active plant component derived from licorice root, 18ßGA has sparked a lot of attention due to its pharmacological properties. The current review thoroughly examines the literature on 18ßGA, a major active plant component obtained from Glycyrrhiza glabra L. The current work provides insight into the pharmacological activities of 18ßGA and the potential mechanisms of action involved. The plant contains a variety of phytoconstituents such as 18ßGA, which has a variety of biological effects including antiasthmatic, hepatoprotective, anticancer, nephroprotective, antidiabetic, antileishmanial, antiviral, antibacterial, antipsoriasis, antiosteoporosis, antiepileptic, antiarrhythmic, and anti-inflammatory, and is also useful in the management of pulmonary arterial hypertension, antipsychotic-induced hyperprolactinemia, and cerebral ischemia. This review examines research on the pharmacological characteristics of 18ßGA throughout recent decades to demonstrate its therapeutic potential and any gaps that may exist, presenting possibilities for future drug research and development.

12.
Front Pharmacol ; 14: 1154607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969860

RESUMEN

Introduction: Alzheimer's disease (AD) is the most common type of dementia among older persons. This study looked at how Augmentin affected behavior, gene expression, and apoptosis in rats in which AD had been induced by scopolamine. Methods: The rats were divided into five groups: control, sham, memantine, Augmentin, and pre-Augmentin (the last group received Augmentin before scopolamine administration and was treated with memantine). A Morris water maze was utilized to measure spatial memory in the animals, and real-time quantitative reverse transcription PCR (qRT-PCR) and flow cytometry were employed to analyze gene expression and neuronal cell apoptosis, respectively. Results: Memantine and Augmentin increased spatial memory in healthy rats. The use of scopolamine impaired spatial memory. Both Augmentin and memantine improved spatial memory in AD rats, particularly in the group that received memantine; however, the outcomes were more substantial when Augmentin was administered before scopolamine was given to induce AD. Furthermore, the expression of presenilin-2 (PSEN2) and inositol-trisphosphate 3-kinase B (ITPKB) increased, whereas the expression of DEAD-box helicase 5 (DDX5) fell in the AD-treated groups; however, the results were more substantial after combination therapy. According to flow cytometry studies, Augmentin pre-treatment reduced apoptosis in AD rats. Discussion: The results showed that administering Augmentin to AD rats before memantine improved their spatial memory, reduced neuronal cell death, upregulated protective genes, and suppressed genes involved in AD pathogenesis.

13.
Acta Pharm ; 73(1): 1-27, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36692468

RESUMEN

Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.


Asunto(s)
Antimaláricos , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico
14.
Eur J Pharm Sci ; 182: 106378, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638899

RESUMEN

Colorectal cancer (CRC) is the most frequent form of gastrointestinal cancer and one of the major causes of human mortality worldwide. Many of the current CRC therapies have limitations due to multidrug resistance and/or severe side effects. Quinazoline derivatives are promising lead compounds with a wide range of pharmacological actions. In this study, the effect of seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues as potential anticancer agents against two CRC cell lines (HCT116 and SW480) was investigated using cell viability proliferation, migration, adhesion and invasion assays. A liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics approach was used to identify the underlying biochemical pathways disturbed in treated-HCT116 cells. Cell viability proliferation assay revealed that four compounds (C2, C3, C5, and C7) had IC50 < 10 µM with C5 displaying the most potent cytotoxic effect (IC50 1.4 and 0.3 µM against HCT116 and SW480, respectively). Additionally, the compounds showed suppression of wound closure after 72 h, and both C2 and C5 significantly decreased the number of adherent cells and suppressed HCT116 cells invasion. Metabolomics study revealed that C5 induced significant perturbations in the level of several metabolites including spermine, polyamines, glutamine, creatine and carnitine, and altered biochemical processes essential for cell proliferation and progression such as amino acids biosynthesis and metabolism, redox homeostasis, energy related processes (e.g., fatty acid oxidation, second Warburg like effect) and one-carbon metabolism. Our findings indicate that 2,3-dihydroquinazolin-4(1H)-one analogues, particularly C5, have promising anticancer properties, and shed light on the role of metabolomics in identifying new therapeutic targets and providing better understanding of the pathways altered in treated cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Células HCT116 , Metabolómica , Proliferación Celular
15.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36558926

RESUMEN

Lung cancer is considered the most commonly diagnosed cancer and one of the leading causes of death globally. Despite the responses from small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) patients to conventional chemo- and radiotherapies, the current outcomes are not satisfactory. Recently, novel advances in DNA sequencing technologies have started to take off which have provided promising tools for studying different tumors for systematic mutation discovery. To date, a limited number of DDR inhibition trials have been conducted for the treatment of SCLC and NSCLC patients. However, strategies to test different DDR inhibitor combinations or to target multiple pathways are yet to be explored. With the various biomarkers that have either been recently discovered or are the subject of ongoing investigations, it is hoped that future trials would be designed to allow for studying targeted treatments in a biomarker-enriched population, which is defensible for the improvement of prognosis for SCLC and NSCLC patients. This review article sheds light on the different DNA repair pathways and some of the inhibitors targeting the proteins involved in the DNA damage response (DDR) machinery, such as ataxia telangiectasia and Rad3-related protein (ATR), DNA-dependent protein kinase (DNA-PK), and poly-ADP-ribose polymerase (PARP). In addition, the current status of DDR inhibitors in clinical settings and future perspectives are discussed.

16.
Molecules ; 27(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36500230

RESUMEN

A series of previously synthesized 5-benzyliden-2-(5-methylthiazole-2-ylimino)thiazoli- din-4-one were evaluated for their anti-inflammatory activity on the basis of PASS predictive outcomes. The predictive compounds were found to demonstrate moderate to good anti-inflammatory activity, and some of them displayed better activity than indomethacin used as the reference drug. Structure-activity relationships revealed that the activity of compounds depends not only on the nature of the substituent but also on its position in the benzene ring. The most active compounds were selected to investigate their possible mechanism of action. COX and LOX activity were determined and found that the title compounds were active only to COX-1 enzymes with an inhibitory effect superior to the reference drug naproxen. As for LOX inhibitory activity, the derivatives failed to show remarkable LOX inhibition. Therefore, COX-1 has been identified as the main molecular target for the anti-inflammatory activity of our compounds. The docking study against COX-1 active site revealed that the residue Arg 120 was found to be responsible for activity. In summary, the 5-thiazol-based thiazolidinone derivatives have been identified as a novel class of selective COX-1 inhibitors.


Asunto(s)
Inhibidores de la Ciclooxigenasa , Inhibidores de la Lipooxigenasa , Inhibidores de la Lipooxigenasa/farmacología , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Ciclooxigenasa/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Relación Estructura-Actividad , Estructura Molecular , Inhibidores de la Ciclooxigenasa 2/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química
17.
Sci Rep ; 12(1): 21599, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517571

RESUMEN

Prostate cancer (PC) is the second most common tumor in males worldwide. The lack of effective medication and the development of multidrug resistance towards current chemotherapeutic agents urge the need to discover novel compounds and therapeutic targets for PC. Herein, seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues were evaluated for their anticancer activity against PC3 and DU145 cancer cell lines using MTT, scratch-wound healing, adhesion and invasion assays. Besides, a liquid chromatography mass spectrometry (LC-MS)-based metabolomics approach was followed to identify the biochemical pathways altered in DU145 cancer cells upon exposure to dihydroquinazolin derivatives. The seven compounds showed sufficient cytotoxicity and significantly suppressed DU145 and PC3 migration after 48 and 72 h. C2 and C5 had the most potent effect with IC50 < 15 µM and significantly inhibited PC cell adhesion and invasion. Metabolomics revealed that C5 disturbed the level of metabolites involved in essential processes for cancer cell proliferation, progression and growth including energy production, redox homeostasis, amino acids and polyamine metabolisms and choline phospholipid metabolism. The data presented herein highlighted the importance of these compounds as potential anticancer agents particularly C5, and pointed to the promising role of metabolomics as a new analytical approach to investigate the antiproliferative activity of synthesized compounds and identify new therapeutic targets.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Proliferación Celular , Antineoplásicos/uso terapéutico
18.
Molecules ; 27(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36364209

RESUMEN

The activity of the P-glycoprotein (P-gp) transporter encoded by the ABCB1 gene confers resistance to anticancer drugs and contributes to cancer-related mortality and morbidity. Recent studies revealed the cytotoxic effects of the endogenous dipeptide carnosine. The current study aimed to investigate the role of carnosine as a potential inhibitor of P-gp activity. We used molecular docking and molecular dynamic simulations to study the possible binding and stability of carnosine-P-gp interactions compared with verapamil. In vitro assays using doxorubicin-resistant NCI/ADR-RES cells were established to test the effects of carnosine (10-300 µM) on P-gp activity by the rhodamine-123 efflux assay and its effect on cell viability and doxorubicin-induced cytotoxicity. Verapamil (10 µM) was used as a positive control. The results showed that carnosine binding depends mainly on hydrogen bonding with GLU875, GLN946, and ALA871, with a higher average Hbond than verapamil. Carnosine showed significant but weaker than verapamil-induced rhodamine-123 accumulation. Carnosine and verapamil similarly inhibited cell viability. However, verapamil showed a more significant potentiating effect on doxorubicin-induced cytotoxicity than a weaker effect of carnosine at 300 µM. These results suggest that carnosine inhibits P-gp activity and potentiates doxorubicin-induced cytotoxicity at higher concentrations. Carnosine might be a helpful lead compound in the fight against multidrug-resistant cancers.


Asunto(s)
Antineoplásicos , Carnosina , Resistencia a Múltiples Medicamentos , Carnosina/farmacología , Carnosina/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Simulación del Acoplamiento Molecular , Resistencia a Antineoplásicos , Doxorrubicina/farmacología , Rodamina 123/farmacología , Verapamilo/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología
19.
Molecules ; 27(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296501

RESUMEN

The 4-allyl guaiacol is a natural phenolic molecule that has been widely studied for its antioxidant capacity against reactive-oxygen-species-mediated cellular damage. Therefore, we hypothesized that concomitant use of an antioxidant and NSAID may decrease the risk of gastrointestinal toxicity and make the therapy safer. To address the gastrointestinal toxicity of conventional NSAIDs, a new S-naproxen-4-allyl guaiacol chimera (MAS-1696) was computationally developed, chemically synthesized, and tested for anti-inflammatory effectiveness and gastrointestinal safety. The inhibitory potency of MAS-1696 tested against cyclooxygenase-2 (COX2), 15-lipoxygenase-2 (15-LOX2), and lipoxygenase-5 (5-LOX) in vitro revealed a stronger inhibition of COX2. Furthermore, the MAS-1696 chimera increased the COX selectivity index by 23% as compared to the parent compound naproxen, implying higher efficacy and gastric safety. In vivo data showed that MAS-1696 was less likely to cause gastrointestinal harm than naproxen while also exerting anti-inflammatory and analgesic effects equivalent to or superior to naproxen. In conclusion, MAS-1696 is orally active, bio-labile, and crystalline, making it a medication that may be administered orally.


Asunto(s)
Enfermedades Gastrointestinales , Naproxeno , Humanos , Antiinflamatorios , Antiinflamatorios no Esteroideos/química , Antioxidantes , Araquidonato 15-Lipooxigenasa , Ciclooxigenasa 2 , Enfermedades Gastrointestinales/tratamiento farmacológico , Guayacol , Naproxeno/farmacología , Naproxeno/uso terapéutico , Oxígeno
20.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36139761

RESUMEN

Hepatic ischemia/reperfusion (HIR) is the most common type of liver injury following several clinical situations. Modulating oxidative stress and inflammation by Nrf2/HO-1 and TLR4/MYD88/NF-κB pathways, respectively, is involved in alleviating HIR injury. Paeonol is a natural phenolic compound that demonstrates significant antioxidant and anti-inflammatory effects. The present study explored the possible protective effect of paeonol against HIR injury and investigated its possible molecular mechanisms in rats. Rats were randomly divided into four groups: sham-operated control, paeonol-treated sham-operated control, HIR untreated, and HIR paeonol-treated groups. The results confirmed that hepatic injury was significantly aggravated biochemically by elevated serum levels of alanine transaminase and aspartate transaminase, as well as by histopathological alterations, while paeonol reduced the increase in transaminases and alleviated pathological changes induced by HIR. Additionally, paeonol inhibited the HIR-induced oxidative stress in hepatic tissues by decreasing the upraised levels of malondialdehyde and nitric oxide and enhancing the suppressed levels of reduced glutathione and superoxide dismutase activity. Furthermore, paeonol activated the protective antioxidative Nrf2/HO-1 pathway. The protective effect of paeonol was associated with inhibiting the expression of the inflammatory key mediators TLR4, MYD88, NF-κB, and TNF-α. Finally, paeonol inhibited the increased mRNA levels of the pro-apoptotic marker Bax and enhanced the reduced mRNA levels of the anti-apoptotic marker Bcl-2. Taken together, our results proved for the first time that paeonol could protect against HIR injury by inhibiting oxidative stress, inflammation, and apoptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...